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NeRF: represent 3D scenes as neural nets

* Input: multi view images, intrinsic and extrinsic
* Training: optimize a MLP to fit the scene
* Inference: query the MLP to render novel view images

* Objective: PSNR, SSIM. Measure the image similarity
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NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020



NeRF: represent 3D scenes as neural nets

* Implicit neural representation: &,y,z,6,¢) —>III—>(r,g,b,a)
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NeRF: represent 3D scenes as neural nets

* Implicit neural representation: &,y,z,6,¢) —»Ill—b(r,g,b,a)
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Applications of NeRF in autonomous driving

* Motivation:
* Generate free training data by AIGC (GAN, NeRF, diffusion...)

* Provide realistic evaluation and simulation

* Advantage:

* 1. No need for human annotation

« 2. Controllable (6D pose, lighting), easy to create long-tail scenes / corner cases

* 3. Nearly the same distribution with real world data, thus no need for domain adaptation

* 4. Photorealistic appearance compared with graphic engine (Unreal ...)



Neural Scene Graphs for Dynamic Scenes

(a) Neural scene graph in isometric view. (b) Neural scene graph from the ego-vehicle view.
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* NSG provides the first exploration of NeRF in driving scenes.
* NSG disentangle dynamic objects and static background by explicit 3D boxes.

* The sequential 3D boxes are obtained from GT or detection+tracking

Neural Scene Graphs for Dynamic Scenes, CVPR 2021



Neural Scene Graphs for Dynamic Scenes

(d) Volume Rendering

(a) Scene Graph (b) Ray-Box Intersection

Point Sampling

(c) Radiance Field at Sampling Points
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Learning paradigm:

Each ray is assigned to a specific object or background by ray-box intersection.

The sampling points are restricted to the 3D box

Volume rendering and compute loss

Neural Scene Graphs for Dynamic Scenes, CVPR 2021



Neural Scene Graphs for Dynamic Scenes

(a) Reference (b) Learned Object Nodes
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(e) Novel Scene
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* Application:
e 1. foreground and background disentanglement

e 2.0bject pose and camera pose manipulation

Neural Scene Graphs for Dynamic Scenes, CVPR 2021
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Neural Scene Graphs for Dynamic Scenes

* NSG can control 6D pose of each object by changing the 3D box layout

 The 3D box layout is descripted by rotation and location of object in each frame

Neural Scene Graphs for Dynamic Scenes, CVPR 2021 11



Block NeRF

* Scale NeRF to city level.

e Divided the whole dataset into multiple blocks,
then use multiple NeRF to reconstruct the whole
scene.

e Limits: Block NeRF can only reconstruct static
scenes. Dynamic objects are filtered by

segmentation mask.

Block-NeRF: Scalable Large Scene Neural View Synthesis, CVPR 2022






Block NeRF

NeRF

KiloNeRF

—

The scaling issue:

Single MLLP does not have the capacity to

reconstruct a large scene.

Solution:

Split the whole scene into regular grids in 3D
space. Each grid is modeled by a specific MLP.

0.02s

2548x faster

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs, ICCV 2021



Block NeRF

e Challenge: lighting variation and time variation

e Solution: using conditional learnable embedding to learn final RGB
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UniSim: Closed-Loop Sensor Simulator

* An extension to NSG
* Sensor simulation: camera images and lidar point cloud

e UniSim provide a test bed for autonomous driving algorithm
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Closed-loop simulation for vehicle cut-in Closed-loop simulation for safety-critical scenarios

UniSim: A Neural Closed-Loop Sensor Simulator, CVPR 2023 15



UniSim: Closed-Loop Sensor Simulator

* Build upon advances in NeRF:

e 1. grid-based feature vs pure MLP

e 2. occupancy grid sampling vs two stage sampling
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UniSim: Closed-Loop Sensor Simulator

* Build upon advances in NeRF:
* 1. grid-based feature vs pure MLP

e 2. occupancy grid sampling vs two stage sampling
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SDV at first frame SDV at last frame
60 m

Figure 2. Region of interest of our scene representation.

UniSim: A Neural Closed-Loop Sensor Simulator, CVPR 2023



UniSim: Closed-Loop Sensor Simulator

Waabi World

Waabi World Engine

Close loop simulator

+  like playing a video game: every action has a reaction

+  Truly experience how the scenario would play out if it were in the real world
1. Immersive — need for sensor simulation (e.g.. cameraq, lidar)
2. Reactive - the SDV reacts to the actors and the actors to the SDV
3. Diversity of the real world in both behavior and appearance
4. Scale: need to be efficient

+  Evaluator that can automatically assess the driving skills

World Realistic Sensor Waabi @ Update J SDV-Updated Reactive and Intelligent
State Simulation Driver ﬂ world state L World State Actor Models

Update world state

lwaabi 17

https://www.youtube.com/watch?v=0RjF9xbkiAY&t=928s, CVPR 2023 workshop




Our work: use NeRF to synthesize training data

Lift3D: Synthesize 3D Training Data
by Lifting 2D GAN to 3D Generative Radiance Field

Leheng Li!, Qing Lian?, Luozhou Wang!, Ningning Ma3, Ying—Cong Chen'?
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Project page: https://len-li.github.io/lift3d-web/ 19



Imagine there is an AIGC algorithm that
generate training data for free

Images, lidar
point clouds, ...

Generator
(world model)

Noise Z —

3D labels




Evaluation setting: data augmentation

* A pure generative model is hard to guarantee the data distribution with real world data

* We instead evaluate the generated data by its benefit of data augmentation.
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Lift3D: Synthesize 3D Training Data by Lifting 2D GAN to 3D Generative Radiance Field, CVPR 2023
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Baseline: GIRAFFE (CVPR 2021 best paper)

e Method: NeRF + GAN
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GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields 22



Use GIRAFFE to augment existing dataset

e Generate new objects and add them to existing scenes

Generated objects

nuScenes dataset

23



Why previous work fall short of 3D consistent generation?

* Due to sample efficiency, NeRF-based GAN typically adopt a two stage pipeline:
* 1. use volume render to generate the low resolution feature.
e 2.upsample the feature to the final image by 2D upsampler.

* Empirical results show that this pipeline does not strictly preserve 3D consistent synthesis due to 2D

upsampler.
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How to escape the computational bottleneck?

* Our method: Disentangle the 2D-3D generation.
» 2D GAN: provide photorealistic image synthesis, NeRF: provide 3D synthesis

* Without relying on fixed-resolution 2D upsampler, Lift3D perform strict 3D consistent synthesis that

generalize to any camera parameters.
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Two stage pipeline

* First stage: use StyleGAN2 to generate multi-view images
» StyleGAN2 provides photorealistic synthesis with rough 3D controllability

* Disentangled 2D GANs allow us to generate images with 3D pose label

Pretrained
StyleGAN2

Shape and appearance




Two stage pipeline

* First stage: use StyleGAN2 to generate multi-view images

* Use synthetic data to automatically find pose label

optimize

Pretrained
StyleGAN2

Shape and appearance

ShapeNet
Renderings
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Two stage pipeline

e Second stage: lift multi-view images to 3D NeRF.

* All instances share the same NeRF network to encode prior.
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Mechanism

 Lift3D disentangles 3D generation from image synthesis

e Outputimage rendered by NeRF thus is strictly 3D consistent

GIRAFFE:

Lift3D:
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Results

* Visualization of multi-view synthesis with plotted 3D box
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Results

* Visualization

result of augmentation

Original Dataset

Augmented Dataset
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Results

* We display improvement of 3D detection accuracy on KITTI dataset
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Summary

Disentangled 3D generation provides tight 3D annotation

Lift3D can synthesize images in any resolution by accumulating single-ray evaluation

Without any domain adaptation, the generated data improves downstream task performance

Achieve good qualitative and quantitative results



Thanks for listening!
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