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• Basic of NeRF

• Recent work of NeRF in autonomous driving

• Generative NeRF helps downstream task (Lift3D)
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Background of Leheng Li
• The Hong Kong University of Science and Technology (Guangzhou)

• Ph.D. student in AI, advised by Prof. Ying-Cong Chen.  2022 - present 

• Dalian University of Technology

• B.Sc. in Mathematics.   2018 – 2022

• I previously interned at NIO and MEGVII Technology.
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NeRF: represent 3D scenes as neural nets
• NeRF: An implicit neural representation for 3D scenes.

• Application: novel view synthesis, reconstruction, generation, …

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020
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NeRF: represent 3D scenes as neural nets

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020

• Input: multi view images, intrinsic and extrinsic

• Training: optimize a MLP to fit the scene

• Inference: query the MLP to render novel view images

• Objective: Image similarity
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NeRF: represent 3D scenes as neural nets
• Ray casting:  cast a ray from camera origin to pixel, then sample points from the ray.

• Volume rendering: mimic the 3D world as a “cloud”, each point in the “cloud” contribute its color.

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020
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NeRF in AD: reconstruct the real world and replay it

Neural Scene Graphs, CVPR 2021

Block NeRF, CVPR 2022 UniSim, CVPR 2023

• In recent years, the community has witnessed 
remarkable progress in NeRF-based driving 
scene simulation. These simulations display 
photorealistic reconstructions of our real world.
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Neural Scene Graphs for Dynamic Scenes

Neural Scene Graphs for Dynamic Scenes, CVPR 2021

• The first exploration of NeRF in driving scenes.

• NSG disentangle dynamic objects and static background by explicit 3D boxes.

• The sequential 3D boxes are obtained from GT or detection+tracking
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Neural Scene Graphs for Dynamic Scenes

Neural Scene Graphs for Dynamic Scenes, CVPR 2021

• NSG can control 6D pose of each object by changing the 3D box layout

• The 3D box layout is descripted by rotation and location of object in each frame 
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Neural Scene Graphs for Dynamic Scenes

Neural Scene Graphs for Dynamic Scenes, CVPR 2021

• NSG provides basic primitive (3D box) to decompose driving scenarios.

• Limitation: 

• NSG generate 3D assets from pre-collected data. The scale of data is limited to 
the amount of real world captured data. 

• What if we leverage generative model to synthesize unlimited data for free?
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Applications of Generative NeRF in autonomous driving 
• Motivation: 

• Generate free training data by AIGC (GAN, NeRF, diffusion…)

• Provide realistic evaluation and simulation

• Advantage: 

• 1. No need for human annotation

• 2. Controllable (6D pose, lighting), easy to create long-tail scenes / corner cases

• 3. Nearly the same distribution with real world data, thus no need for domain adaptation

• 4. Photorealistic appearance compared with graphic engine (Unreal …)
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Our work: use NeRF to synthesize training data 

Leheng Li1, Qing Lian2, Luozhou Wang1, Ningning Ma3, Ying−Cong Chen1,2

Lift3D: Synthesize 3D Training Data 
by Lifting 2D GAN to 3D Generative Radiance Field

1HKUST(GZ), 2HKUST 3NIO

Project page: https://len-li.github.io/lift3d-web/
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Imagine there is an AIGC algorithm that 
generate training data for free 

Generator
(world model)

Noise z
Prompt p

Images, 
Lidar point clouds, …

Labels (3D, video, …)
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Evaluation setting: data augmentation

Lift3D: Synthesize 3D Training Data by Lifting 2D GAN to 3D Generative Radiance Field, CVPR 2023

• It can be challenge to build a comprehensive model with world knowledge.

• Narrow the problem: synthesize objects and augment them to original scene.
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Baseline: GIRAFFE (CVPR 2021 best paper)
• Method: NeRF + GAN

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields, CVPR 2021
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nuScenes dataset

Add 
objects

Generated objects

Use GIRAFFE to augment existing dataset

● Generate new objects and add them to existing scenes

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields, CVPR 2021



Augmentation results of GIRAFFE
• Experiments: Impact of 3D detection accuracy on KITTI dataset
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Augmentation results of GIRAFFE

• Limitation: Augmentation of GIRAFFE introduce negative effect.
• Underlying mechanism: The generated images don’t fit the given label

18GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields, CVPR 2021

Generated multi-view images of an object by GIRAFFE
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Why previous method fall short of 3D consistent generation?

• Due to computational issue, generative NeRF typically adopt a two stage pipeline: 

• 1. use volume render to generate the low resolution feature. 

• 2. upsample the feature to the final image by 2D upsampler.

• Empirical results show that this pipeline does not strictly preserve 3D consistent synthesis due to 2D 
upsampler.

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields, CVPR 2021
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How to escape the computational bottleneck?
• Our method: Disentangle the 2D-3D generation.

• 2D GAN: image synthesis. NeRF: 3D synthesis

• Without relying on fixed-resolution 2D upsampler, Lift3D perform strict 3D consistent synthesis that 
generalize to any camera parameters.
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Mechanism: GAN disentanglement
• Latent code: a high dimensional embedding that determine the content of image

• The latent space of GANs is found to be interpretable and controlled for image synthesis, allowing for 
changes in viewpoint and lighting.

GANSpace: Discovering Interpretable GAN Controls, NeurIPS 2020
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Two stage pipeline
• First stage: StyleGAN2 generates multi-view images of a specific object

• StyleGAN2 provides photorealistic synthesis + rough 3D controllability

• Disentangled 2D GANs allows to generate images with 3D pose label

……

Pose

Shape and texture

Pretrained 
StyleGAN2
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Two stage pipeline
• First stage: StyleGAN2 generates multi-view images of a specific object

• Method: With the GT pose of synthetic data, we find pose latents by optimization

Loss

optimize

Shapenet
Renderings

……
Pose

Shape and texture

Pretrained 
StyleGAN2
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Two stage pipeline
• Second stage: Lift multi-view images to 3D NeRF.

• Conditional NeRF: All instances share the same NeRF network to encode prior.

Pretrained 
StyleGAN2

Randomly initialized
Latent codes

Conditional
NeRF 

Loss

optimize

……

Sample from Pose latents 

Random sample

Pose labels

……
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Mechanism
• GIRAFFE: 2D upsampler generalize poor to unseen pose

• Lift3D: disentangles 3D generation from image synthesis

• Our drawback: imperfect GAN disentanglement, NeRF reconstruction error, …

GIRAFFE: 

Lift3D: 
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Results
• Visualization of multi-view synthesis with plotted 3D box
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Composition
• Special design: The interaction of objects and environments.

• Shadow: casted from rounded rectangle, 

• Map condition: objects are filtered by segmentation mask.
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Results
• Visualization result of augmentation

Original Dataset Augmented Dataset



Results
• Improvement of 3D detection accuracy on KITTI dataset:
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Summary
• Disentangled 3D generation provides tight 3D annotation

• Lift3D can synthesize images in any resolution by accumulating single-ray evaluation

• Without any domain adaptation, the generated data improves downstream task performance
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Future work of AIGC in AD
• Generate long tail scenarios to enhance robustness

• Leverage generative prior to reconstruct real-world objects

• Trajectory generation: synthesize traffic flow

• Scene generation: closed-loop evaluation of self-driving car
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